
Cosmic Index of Public Resources

Juan Barriteau

Last update: 15/11/2023, 09:33:20 UTC-0400

Index

Cipr: Semi-informal Specification 1
Ciprsys . 3

Domain Name System 5
Ciprnet . 5
Ciprnode . 6

Ciprdup . 7
Ciprdup fields 7

sldl 7
tldl 7
title 8
description 8
keywords 8
geo 9
ofle 9
ban 10

General constrains 11
Example 11
Ciprule 11

Localindx . 12

iii

Index

Ciprbot . 12
CiprAPI 12

Summary of the CiprAPI’s end-
points 13

Basic characteristics of the
CiprAPI 15

Ciprpulse 16
1. SEARCH rebroadcasting 22
2. SEARCH broadcasting 24
3. PUT rebroadcasting 24
4. PUT broadcasting 25
5. DELETE rebroadcasting 25
6. DELETE broadcasting 25
7. DNS entries check 25
8. Banned entries check 26

Incorporation to the Ciprnet 26
1. Ciprnode deployment 26
2. Initial configuration 27
3. Ciprdup population 27
4. Hash generation 28
5. TXT record creation 28
6. Ciprpulse activation 29

Ciprface . 29
Searching in the Cipr 31

Directory Entries Match Set 32
Textual Content Matches Set 33

Tenancy models . 36
PoC . 37
Epilogue . 37

iv

Index

Contribution . 38

v

Index

vi

List of Figures

1 The Ciprsys . 4

vii

Cipr: Semi-informal Specification

Note: This is a first iteration of this document, just an
early exposition of the idea, room for improvement
is huge, suggestions and corrections are more than
welcome.

The Cosmic1 Index of Public Resources, or Cipr2, is a decentralized, dis-
tributed, independent, public, universal, dynamic and searcheable di-
rectory of websites and other reachable-by-DNS-resolution resources
in the Internet.

The Cipr shares some characteristics with conventional search engines
and with classic web directories, but adding entries to the Cipr doesn’t
requires crawling the web, as most search engines do; neither requires
the approval of curators or editors, as most directories do.

With the Cipr every content publisher―every domain holder―owns
their entries in the index, meaning, they create, modify and destroy
them at will.

1Because Martians and Belters are welcome.
2Pronounced like kai-per? cy-per? see-per? kee-per? I use the last one, but I’m not

good at English.

1

CIPR: SEMI-INFORMAL SPECIFICATION

Factors that determine ranking position of search results can’t be ob-
scured in the Cipr, they are standardized, consistent, public and de-
fined by universal consensus.

SEO in the Cipr is just about using the correct titles, descriptions, key-
words, alerting and localization data, nothing else.

Censoring/banning/blocking/filtering a Cipr indexed resource is only
possible through DNS censoring/banning/blocking/filtering.

The global availability of every insertion, modification or deletion to
the Cipr is expected to take only a few minutes, when no less.

Having a website or any other resource effectively indexed in the Cipr
simply implies:

• Deploying a specific daemon.
• Filling the resource entry (title, description, keywords…).
• Adding a specific TXT record in the corresponding DNS Zone

namespace.

The mentioned specific daemon is a ciprnode instance, and the specific
TXT record is a simply hashed string provided by the deployed ciprn-
ode. This process is detailed in next sections, but it’s worth to mention
that, due to the simplicity of a ciprnode, the possible surge of free or
low cost ciprnode hosting services is expected to make this dead sim-
ple.

The environment that makes possible the Cipr’s existence is the
Ciprsys.

2

CIPRSYS

Ciprsys

Ciprsys is the set of software components, network elements, proto-
cols, services, principles and constrains that guarantees the complete-
ness, integrity, availability, responsiveness, accuracy, reliability and
up-to-dateness of the the Cipr. Those components are:

• Domain Name System: the existing Internet’s naming system
• Ciprnet: network created by the acting agents in the Ciprsys
• Ciprnode: each Ciprsys daemon

– Ciprdup: copy of the Cipr in every ciprnode
* Ciprule: conventions for FTS3 in the ciprdup

– Localindx: indexed content of the ciprnode’s domain
– Ciprbot: communications agent in every ciprnode

* CiprAPI: the API exposed by the every ciprbot
* Ciprpulse: set of reliability and up-to-dateness

checks
– Ciprface: Cipr search web client

3Full Text Search.

3

CIPR: SEMI-INFORMAL SPECIFICATION

Figure 1: The Ciprsys

Every resource effectively indexed in the Cipr is referred in this docu-
ment as a cipred resource.

The FQDN of a cipred resource will be mentioned as the cFQDN, the
same as a sldl.tldl.

4

CIPRSYS

Domain Name System

The DNS is the old, trustable, ubiquitous hierarchical and decentral-
ized naming system used to identify resources in the Internet; Ciprsys
uses it to:

1. Verify cipred resources existence and validity by finding exist-
ing entries when looking up for a resource.

2. Verify Cipr entries correctness by matching hashes of Cipr en-
tries with existing TXT records.

Extending the verification tasks to any known DNS Root Zone alterna-
tive4 is technically possible.

Ciprnet

The Ciprnet is the network created by the acting agents in the Ciprsys.
There are three types of message exchanges in the Ciprnet:

1. Internal communication between the daemons of the network.
2. Communication between the daemons of the network and the

DNS.
3. Communication between external clients and the daemons of

the network.

4Handshake, OpenNIC, Namecoin…

5

CIPR: SEMI-INFORMAL SPECIFICATION

Ciprnode

Most functions of the Ciprsys relies on its ciprnodes. A ciprnode is a
daemon with the main function of holding a copy of the Cipr and keep
it synchronized with all other copies in the rest of the ciprnodes.

Second function of a ciprnode is to serve as an entry point for the
search queries to the Cipr, this is done by exposing a web service to
attend non-human request, and a web form for human users.

Additionally, each ciprnode must index the full content of the resource
it belongs to, and search queries to this internal/local index must be
possible through the mentioned human and non-human interfaces.

Every ciprnode must be accesible in a FQDN following this pattern:

https: ciprnode.sldl.tldl

Where tldl is a top level domain (TLD) label, sldl is a second level do-
main (SLD) label, the literal ciprnode must be the third level domain
(3LD) label and no further subdomains can exist under it, for exam-
ple:

https: ciprnode.cipr.info

Note that for some country code top-level domains (ccTLD) is limited
or forbidden the registration of second level domains, this means that
resources like bbc.co.uk, up.edu.br or ivic.gob.ve can’t be indexed in
the Cipr5.

5This is because allowing ciprnodes under the 3LD will permit the incorporation
of infinite ciprnodes under one FQDN.

6

CIPRSYS

Ciprdup

A ciprdup is the working copy of the Cipr in every ciprnode, it’s proba-
bly―but not mandatorily―a table or a group of tables in a DBMS. The
fields of the ciprdup are the same fields of the Cipr plus one: sldl, tldl,
title, description, keywords, geo, ofle and ban.

Ciprdup fields The ciprdup’s fields are essentially the Cipr’s fields,
let’s digg in one each of them.

sldl Second level domain label of the resource in the Domain Name
System.

• Constrains:

– Min length: 1 character.
– Max length: 64 characters.
– Allowed values: all the Unicode charset except the full

stop character (.).

tldl Top level domain label of the resource in the Domain Name
System.

• Constrains:

– Min length: 1 character.
– Max length: 64 characters.
– Allowed values: all the Unicode charset except the full

stop character (.).

7

CIPR: SEMI-INFORMAL SPECIFICATION

title The indexed resource’s title, this field is to be included in FTS
queries.

• Constrains:

– Min length: 0 characters.
– Max length: 64 characters.
– Allowed values: all the Unicode charset and nothing.
– Default: empty.

description The resource’s description, this field is to be included in
FTS queries.

• Constrains:
• Min length: 0 characters.
• Max length: 256 characters.
• Allowed values: all the Unicode charset and nothing.
• Default: empty.

keywords The resource’s keywords, this field is to be included in FTS
queries.

• Constrains:

– Min length: 0 characters.
– Max length: 512 characters.
– Allowed values: all the Unicode charset and nothing.
– Default: empty.

8

CIPRSYS

geo Approximate geographic coordinates of the resource, this is an
optional field, when used coordinates are stored with very low preci-
sion.

• Constrains:

– Min length: 0 character.
– Max length: 14 characters.
– Allowed values: nothing or a comma separated longitude

and latitud pair with a max of two decimal places each.
– Default: empty.

ofle Offensiveness level, a subjective indicator of how offensive the
resource content could be from its publisher’s point of view. Possible
values are:

NOC (empty): Non Offensive Content, indicates the content is not
offensive to any social group in the whole world, including but not
restricted to: specific regions inhabitants, ethnic groups, cultural
groups, any nation members, guilds members, collectives members,
tribes members, age groups members, genre groups members, re-
ligious groups members, or members of any other form of social
aggrupation.

LOC (1): Localized Offensive Content, indicates the content could be
offensive to one or more social groups, but not to all of them.

UOC (2): Universally Offensive Content, used when the publisher con-
siders the offensiveness of the content is transversal to most social
groups in the world.

9

CIPR: SEMI-INFORMAL SPECIFICATION

Offensiveness for individuals is not to be considered, but it’s up to the
publishers assuming specific individuals as groups.

It is suggested to provide extra information in the description field to
clarify why the resource is considered LOC or UOC when this is the
case.

• Constrains:

– Min length: 0 characters.
– Max length: 1 character.
– Allowed values: 1, 2 and empty.
– Default: empty.

ban Auxiliary column where a ciprbot stores its own assessment of
a resource trustability. An empty or false value means the resource is
trusted, true indicates distrust.

This column is for the internal use of each ciprbot and mustn’t be
shared between nodes.

It’s expected that a ciprbot ignores requests coming from banned peers
and avoid querying them, more details about this in the section dedi-
cated to the ciprpulse.

• Constrains:

– Min length: 0 characters.
– Max length: 1 character.
– Allowed values: true|false.
– Default: empty.

10

CIPRSYS

General constrains sldl and tldl are to be considered a primary key
in the ciprdup, meaning, there can’t be two entries with the same com-
bination of them.

Example

Table 1: Example representation of the Cipr
sldl tldl title description keywords geo ofle ban

example com Example
Domain

For
examples

rat pote
table

true

foobar org The Foobar
Zone

Foobar late chupe
ola

-90.12,-
180.12

elcoco buh Offense For
All

Fully
offensive

bit cigar
tool

2

offense com Offense For
Some

A bit
offensive

truck ala
wing

1

pali to Little Stick Stick
dedicated

polo hilo
star

true

cipr info The Cipr
Spec

Cipr spec pose wind
pork

1,1

Ciprule The Ciprule is a universal convention about how optimiza-
tion, filtering and ranking are to be applied when searching in the
ciprdups.

Ciprule defines the criteria to rank results, how to strip if stripping is
allowed, how to tokenize if tokenizing is a thing, if lowercasing or not,
if stop words are removed or not and which ones, which are synonyms
if they are to be considered, if stemming or not, if using fuzziness or
not, how to treat ORs, ANDs and NORs, exact phrases and so on.

11

CIPR: SEMI-INFORMAL SPECIFICATION

This is not something to be defined at this stage of this document, so,
more to come.

Localindx

The localindx is a full content index of a individual cipred resource.
The creation of the localindx is the exclusive responsibility of each
publisher, how (crawling? at building?) and when (daily? weekly?
monthly?) depends on them; but, no matter how/when it is generated,
the localindx must be searchable through the CiprAPI.

The use of a localindx isn’t mandatory, but having it is extremely conve-
nient for the publisher; this is an optional but desirable component.

Ciprbot

A ciprbot is the residing autonomous agent in every ciprnode, it exe-
cutes some tasks on demand and some tasks following a predefined
schedule; basically, they keep all ciprdups in sync while serving as en-
try points for Cipr searches.

CiprAPI CiprAPI is the program interface used to keep the flow of
search queries and the integrity and synchronization of all ciprnodes,
this is, guaranteeing that every one of them effectively keeps an up-
dated, trustable and queryable copy of the Cipr.

12

CIPRSYS

Each ciprbot exposes at least a REST-compliant interface exchanging
at least a set of JSON:API formatted messages. The minimal essential
endpoints in this interface are:

Summary of the CiprAPI’s endpoints

SEARCH /
SEARCH /cFQDN/

PUT /
PUT /cFQDN/
PUT /cFQDN/title/
PUT /cFQDN/description/
PUT /cFQDN/keywords/
PUT /cFQDN/geo/
PUT /cFQDN/ofle/
PUT /cFQDN/ban/

DELETE /
DELETE /cFQDN/
DELETE /cFQDN/title/
DELETE /cFQDN/description/
DELETE /cFQDN/keywords/
DELETE /cFQDN/geo/
DELETE /cFQDN/ofle/
DELETE /cFQDN/ban/

GET /
GET /cFQDN/

13

CIPR: SEMI-INFORMAL SPECIFICATION

GET /cFQDN/title/
GET /cFQDN/description/
GET /cFQDN/keywords/
GET /cFQDN/geo/
GET /cFQDN/ofle/
GET /cFQDN/ban/

OPTIONS *
OPTIONS /
OPTIONS /cFQDN/
OPTIONS /cFQDN/title/
OPTIONS /cFQDN/description/
OPTIONS /cFQDN/keywords/
OPTIONS /cFQDN/geo/
OPTIONS /cFQDN/ofle/
OPTIONS /cFQDN/ban/

The SEARCH methods can receive the pages[num] and pages[size] query
parameters, being num an array of integers indicating which page num-
bers are expected per query, and size an array of integers indicating the
expected number of entries per page on each query. For example:

SEARCH /cFQDN/?pages[num]=[1,1]&pages[size]=[10,20]

The same parameters can be sent included in the body request and, in
case of conflict, the body has precedence.

The GETmethods can receive the page[num] and page[size]query param-
eters, being num an integer indicating which page number are expected,
and size an integer indicating the expected number of entries per page.
For example:

14

CIPRSYS

GET /cFQDN/keywords/?page[num]=1&page[size]=20

In the body of every OPTIONS response are described the requests and
responses schemas used with each method.

Basic characteristics of the CiprAPI Implementations of the CiprAPI
must have full Unicode support and must be, at least, JSON:API com-
pliant, thus, all HTTP requests with body have to validate with this
standard, the same applies for all responses with body. When using
this standard, the Content-Type and Accept headers must have applica-
tion/vnd.api+json; charset=utf-8 as their media type.

Unrecognized media types must treated as text/html and redirected to
the ciprface of the deployed node, the same applies if the Acceptheader
isn’t present in the petition.

The CiprAPI must adhere at least and strictly to the whole REST archi-
tectural constraints, that paying particular attention to the uniform in-
terface constraint and the use ofhypermediaas the engineof application
state; this is vital in order to guarantee that, after any update, change
or alteration of the API, all the automaton agents in the Ciprsys stay
able to work after recognizing every change and adapting to it without
human intervention.

The mandatory RESTfulness of the CiprAPI doesn’t means that imple-
mentations adding different architectural styles are prohibited, as far
as the required level of automaton’s autonomy is provided, anything
else is perfectly acceptable, and even desirable.

The same principle applies to the use of JSON:API and the HTTP pro-
tocol itself, they all are mandatory as defaults, but developers finding

15

CIPR: SEMI-INFORMAL SPECIFICATION

better or more efficient means to achieve the expected functionalities
are encouraged to improve the Ciprsys with their ideas.

Non SSL/TLS requests to the CiprAPI must be rejected, always and un-
der any circumstance.

Ciprpulse The Ciprpulse is a set of automated reliability and up-to-
dateness checks in the Cipr, it consist of, at least, eight checks:

• Reliability checks:

1. SEARCH rebroadcasting
2. SEARCH broadcasting

• Up-to-dateness checks:

3. PUT rebroadcasting
4. PUT broadcasting
5. DELETE rebroadcasting
6. DELETE broadcasting
7. DNS entries check
8. Banned entries check

Rebroadcasting: refers to the act of copying an incoming CiprAPI re-
quest and, simultaneously, send identical requests to one or more ran-
domly chosen cFQDNs.

Broadcasting: refers to the act of simultaneously sending an identi-
cal request to one or more randomly chosen cFQDNs; in this case, the
request is created by the ciprbot itself, isn’t the copy of an incoming
one.

16

CIPRSYS

Rebroadcastings are triggered by the reception of specific requests,
broadcastings are triggered by schedule.

Additional checks could be added, this is just a mandatory minimal
set, if it’s considered that other checks will improve the reliability and
up-to-dateness of a implementation with no detriment of any other
aspect of the Ciprsys, their addition is perfectly acceptable.

A ciprbot implementation must use, at least, the implementations of
the following internal functions6:

/
*
* Retrieve n randomly selected
* cFQDNs from the ciprdup.
*
* If n is null, the function randomly
* chooses how many cFQDNs return.
*
* @param {?number} n - number of expected cFQDNs
* @returns {string[]} - array of cFQDNs
⁎/
const randomEntriesSet = (n) { / ⁎/ };

/
*
* Retrieve n randomly selected
* banned cFQDNs from the ciprdup.

6This is language independent pseudocode, any similarity with ECMAScript and
JSDoc syntaxes is coincidental.

17

CIPR: SEMI-INFORMAL SPECIFICATION

*
* If n is null, the function randomly
* chooses how many cFQDNs return.
*
* @param {?number} n - number of expected banned cFQDNs
* @returns {string[]} - array of banned cFQDNs
⁎/
const randomBannedEntriesSet = (n) { / ⁎/ };

/
*
* Retrieve a random period of time.
*
* @returns {integer} - time period in miliseconds
⁎/
const randomPeriod = () { / ⁎/ };

/
*
* Generates a fake query.
*
* Randomized aspects must include all
* possible variables: keywords, page
* number, page size, geo, ofle
*
* @returns {Object[]} - array of objects with a fake query
⁎/
const fakeQuery = () { / ⁎/ };

18

CIPRSYS

/
*
* Send a set of queries to the local ciprdup.
*
* @param {Object[]} q - array of objects of queries
* @returns {Object[]} - array of objects with search results
⁎/
const ciprdupSearch = (q) { / ⁎/ };

/
*
* Send a set of queries to the localindx.
*
* @param {Object[]} q - array of objects of queries
* @returns {Object[]} - array of objects with search results
⁎/
const localindxSearch = (q) { / ⁎/ };

/
*
* Query for especific entries in the local ciprdup.
*
* @param {string[]} e - array of cFQDNs
* @returns {Object[]} - array of objects with the requested data
⁎/
const localRequest = (e) { / ⁎/ };

/
*

19

CIPR: SEMI-INFORMAL SPECIFICATION

* Insert/update to the local ciprdup.
*
* @param {Object[]} e - array of entries to be processed
* @returns {boolean[]} - array of booleans indicating success or not
⁎/
const localChange = (e) { / ⁎/ };

/
*
* Delete entry or entries in
* the local ciprdup.
*
* @param {Object[]} e - array of entries to be processed
* @returns {boolean[]} - array of booleans indicating success or not
⁎/
const localRemoval = (e) { / ⁎/ };

/
*
* Compare all provided strings
* and returns the matching factor,
* being it 1 if all strings match,
* 0 if none match, 0.5 if half of
* them match, and so on.
*
* @param {string[]} s - array of strings
* @returns {number} - matching factor
⁎/
const comparison = (s) { / ⁎/ };

20

CIPRSYS

/
*
* Returns the total number of
* entries in the ciprdup.
*
* @returns {integer} - total entries
⁎/
const entriesCount = () { / ⁎/ };

/
*
* Given a list cFQDNs with their hashes, the Domain Name
* System is queried to verify if the provided hashes are
* matches to their correspondants in the Cipr's TXT record
*
* @param {Object[]} d - object of cFQDNs with their hashes
* @returns {boolean[]} - array of booleans
⁎/
const lookup = (d) { / ⁎/ };

/
*
* Non-cryptographic hash function
*
* @param {string} s - string to be hashed
* @returns {string} - hash
⁎/
const hash = (s) { / ⁎/ };

21

CIPR: SEMI-INFORMAL SPECIFICATION

1. SEARCH rebroadcasting After receiving a SEARCH request with a q
query, a ciprbot must:

1.1. Send the same SEARCH request looking for the SAME PAGE to a ran-
domEntriesSet(n)7 of cFQDNs.

1.2. Send the same SEARCH request looking for the NEXT PAGE to a ran-
domEntriesSet(m)8 of cFQDNs.

―For any response to the sent SEARCH requests that is erroneous (any
5XX Server ErrorHTTP Status Code or timeout):
A PUT /cFQDN/ban/ with ban=true must be sent to a randomEntriesSet(p)9

of cFQDNs, for example:

PUT /cFQDN/ban/ HTTP/1.1
Host: ciprnode.sldl.tldl
Content-Type: application/vnd.api+json; charset=utf-8

{
"data": [
{
"ban": true

}
]

}
7Initial suggested value for n is 1, but a specific equation to get this value must be

created.
8Initial suggested value for m is 4, but a specific equation to get this value must be

created.
9Initial suggested value for p is the 2% of entriesCount(), but a specific equation to

get this value must be created.

22

CIPRSYS

The intention with the bans broadcasting is to notify in the Ciprnet the
existence of faulty ciprnodes. Banning a cFQDN means that requests
from it must be responded with 200 OK HTTP status without taking any
other action, and requests to it must be avoided.

― For any response to the sent SEARCH request that has any 4XX Client
ErrorHTTP Status Code:

The needed OPTIONS request must be sent to the failing ciprbot in or-
der to diagnose what’s happening, if it’s determined that a local prob-
lem exists, corrections must be made and the original requests must
be resent, if the diagnostic determines it’s really a problem with the
requested node, a PUT /cFQDN/ban/ with ban=true must be sent to a ran-
domEntriesSet(p) of cFQDNs.

― For any response to the sent SEARCH request that has any 2XX Sucess
HTTP Status Code:

If it was a 1.1. request, a comparison() must be made between
ciprdupSearch(q) and every query results coming from randomEntries-
Set(n), it is expected all of them to be identical, if not, a PUT with
ban=true for the failing ones must be sent to a randomEntriesSet(p),
being the failing ones those different to ciprdupSearch(q).

If it was a 1.2. request, a comparison() must be made between all
the query results coming from randomEntriesSet(m), it is expected all
of them to be identical, if not, a PUT with ban=true must be sent to
a randomEntriesSet(p) for the failing ones ; being the failing ones the
fewest that differ from the majority.

The assumed correct NEXT PAGE is to be temporarily stored and used
if asked by the client.

23

CIPR: SEMI-INFORMAL SPECIFICATION

2. SEARCH broadcasting Here happens almost the same as in 1.1.,
only difference is that here the ciprbot sends a SEARCH request with a
fakeQuery() to a randomEntriesSet(n) every randomPeriod() and not be-
cause of a received request, it’s just an scheduled task, the rest of the
steps here are exactly the same ones as in 1.1..

3. PUT rebroadcasting After receiving a PUT request with the e entries,
a ciprbot must lookup(d) to verify the correctness of the received up-
date/insert, if it’s verified, the ciprbot must do a localChange(e) and
then send the same PUT request to a different randomEntriesSet(n) of
cFQDNs every randomPeriod() until receiving again the exact same re-
quest.
When the PUT is a ban request, a ciprdupSearch(fakeQuery()) must ne
compared with the result of a SEARCH of the same fakeQuery() sent to
the suspicious cFQDN, if they are equal, the ban request is ignored,
otherwise, the rebroadcasting of the request has to be made.

― For any response to the sent PUT requests that is erroneous (any
5XX Server ErrorHTTP Status Code or timeout):
A PUT /cFQDN/ban/ with ban=true must be sent to a different randomEn-
triesSet(n) of cFQDNs every randomPeriod() until receiving again the
exact same request.

― For any response to the sent PUT request that has any 4XX Client
ErrorHTTP Status Code:

The needed OPTIONS request must be sent to the failing ciprbot in or-
der to diagnose what’s happening, if it’s really a client problem, local

24

CIPRSYS

corrections must be made and requests must be resent, if the diag-
nostic determines is really a problem with the requested node, a PUT
/cFQDN/ban/ with ban set to true must be sent to a different randomEn-
triesSet(n) of cFQDNs every randomPeriod() until receiving again the
exact same request.

― For any response to the sent PUT request that has any 2XX Sucess
HTTP Status Code:

No further actions are to be made.

4. PUTbroadcasting Here the ciprbot does a localRequest(randomEntriesSet())
and sends a group of PUT request to a randomEntriesSet(n) every ran-
domPeriod() until receiving again the exact same request for every
cFQDN in this randomEntriesSet().

5. DELETE rebroadcasting Here is done exactly the same as in 3., only
difference is the use of DELETEs instead of PUTs.

6. DELETE broadcasting The only situation where a ciprbot start a
new DELETE to be broadcasted is to be removed itself from the Ciprnet
after deleting its TXT entry from the DNS.

7. DNS entries check The ciprbot sends a lookup(randomEntriesSet())
every randomPeriod(). A PUT /cFQDN/ban/ must be for each failed check,
for all successful checks any action must be taken.

25

CIPR: SEMI-INFORMAL SPECIFICATION

8. Banned entries check The ciprbot sends a SEARCH request with a
fakeQuery() to a randomBannedEntriesSet() every randomPeriod(). A com-
parison() must be made between ciprdupSearch(fakeQuery()) and ev-
ery query results coming from the randomBannedEntriesSet(), a PUT with
ban=falsemust be sent to a randomEntriesSet() for each response identi-
cal to ciprdupSearch(fakeQuery()). For all failed checks any action must
be taken and the existing ban stays.

Incorporation to the Ciprnet

The process to incorporate a ciprnode to the Ciprsys is the same pro-
cess that allows having an entry in the Cipr. In general terms, the fol-
lowing steps mus be taken to have a working ciprnode, and a valid en-
try in the Cipr:

1. Ciprnode deployment

This step is accomplished after having a ciprnode installed and able to
operate in the Ciprnet as https: ciprnode.sldl.tldl. This is not about
it to be operating as an effective node of the network yet, it’s the sole
fact of it being ready to receive request to its API, but still being an
unknown agent in the Ciprnet.

26

CIPRSYS

2. Initial configuration

Each ciprnode must be specifically configured before its incorporation
to the Ciprnet. A least, the following parameters must be provided to
be stored in a configuration file, a database or something similar:

bootstrap_node="a trusted and already incorporated ciprnode URI"
thirdld="subdomain labels"
sldl="second level domain label"
tldl="top level domain level"
title="title of the resource"
description="description of the resource"
keywords="keywords of the resource"
geo="coordinates of the resource"
ofle="level of offesivness"

This is a minimal, probably more configuration parameters will be
needed, like limits and ranges for the use of the internal functions,
timeouts for the different types of requests and so on.

3. Ciprdup population

Once the ciprnode is deployed and has its initial configuration, next
action is to populate its ciprdup, the retrieval of entries begins with a
GET / to the bootstrap_node and then it’s possible to keep going with the
gradually obtained cFQDNs.

Note that, even when a GET / is an ask for the whole Cipr, the response
is always paginated, then, asking for different pages to different nodes
could be wiser than sticking to only one.

27

CIPR: SEMI-INFORMAL SPECIFICATION

Of course, it’s perfectly possible to simply copy a whole ciprdup from
and existing ciprnode and avoid expending time in the sync process,
but in this case is very important to certify the validity of the obtained
copy, otherwise, the incorporating ciprnode will be getting banned as
soon as it start connecting to the network.

In any case, the last entry to insert in the ciprdup is the correspond-
ing one to the ciprnode itself taking the needed fields from the initial
configuration file/db.

4. Hash generation

Having a populated ciprdup, the ciprnode must automatically gener-
ate a hash using the existing info in the configuration:

const selfGneratedEntryHash = hash(
`${title}^^${description}^^${keywords}^^${geo}^^${ofle}`

);

5. TXT record creation

By manual or automated means, a TXT record must be created in the
corresponding DNS Zone namespace, something like:

Name: ciprnode.sldl.tldl
Record Type: TXT
Value: "entryhash=selfGneratedEntryHash"
TTL: 1800

28

CIPRSYS

6. Ciprpulse activation

At this point the ciprnode is ready to enter the Ciprnet, for this all the
Ciprpulse functions must be activated, plus, it could be a good idea to
promote the ciprface usage, search going through it contributes with
the sanity of the newly incorporated ciprnode.

Ciprface

A ciprface is a front-end for the human interaction with the Cipr, is the
default client of the Ciprsys. At least one ciprface must be available in
every ciprnode and it must be accesible from any browser as:

https: ciprnode.sldl.tldl

Bing this the exact same URL of the same node ciprbot, the ciprnode
must be able to discriminate how to process the request based in the
information provided by the Accept HTTP header; if it’s empty, absent
or has any of the following media types:

• text/html
• application/xhtml+xml
• application/xml;q=0.9
• ⁎/ ;q=0.8

The request is for the ciprface, and it it’s:

• application/vnd.api+json; charset=utf-8

29

CIPR: SEMI-INFORMAL SPECIFICATION

The request is for the ciprbot.

Non-TLS requests to a ciprface must be always ignored, rejected or redi-
rected.

There are no checks to verify the presence of the ciprface in a ciprn-
ode, so they could be absent or deactivated without affecting the rep-
utation of the ciprnode, but having an active ciprface has advantages
for a ciprnode: the more search requests it processes, more up-to-date
will be its ciprdup.

Some recommendations may be made in relation with the content and
design of a ciprface, but every domain holder has the last word about
it. That being said, there is a minimal set of features a ciprface must
have to be considered compliant with this specification:

• Must offer an input box to enter queries to the Cipr.
• Help and guidance must be given about the Ciprule’s available

options (case sensitivity, ORs, NORs, ANDs…).
• At least one of the following capabilities must be available:

– Pagination of results
– Loadmore results button
– Infinite scroll for results

• Must have the ability to merge localindxs results with their cor-
responding ciprdup results (more on this in the next section).

• Must provide the necessary tools to improve a search and recur-
sively optimize it.

30

CIPRSYS

Searching in the Cipr

A single request to search the Cipr could contain multiple queries, for
example:

SEARCH / HTTP/1.1
Host: ciprnode.sldl.tldl
Accept: application/vnd.api+json; charset=utf-8
Content-Type: application/vnd.api+json; charset=utf-8

{
"data": [
{
"srch_id": 1,
"srch_string": "how to play the drums",
"srch_options": {
"page_number": 1,
"page_size": 3

}
},
{
"srch_id": 2,
"srch_string": "cat turpial && toad (conejo dog) chivo",
"srch_options": {
"page_number": 1,
"page_size": 10

}
}

31

CIPR: SEMI-INFORMAL SPECIFICATION

]
}

A request like this could be made from one ciprnode to another, or
from a client to any a ciprnode.

Every Cipr search happens in two phases, the first one returns the
Directory Entries Match Set (DEMS) and the second returns the
Textual Content Match Set or TCMS.

Directory Entries Match Set

This is the result of matching the user provided query with the entries
in the Cipr itself, it’s obtained by full-text-searching the contents of
the title, description and keywords fields and applying any provided
filtering for the geo and ofle fields.

The DEMS is basically a paginated list of cipred resources ordered by
their relevance to the provided search query, for example:

{
"srch_id": 1,
"page_num": 1,
"page_size": 3,
"total_pages": 234,
"matches": [
{
"rank": 1,
"domain": "example.com"

},

32

CIPRSYS

{
"rank": 2,
"domain": "example.org"

},
{
"rank": 3,
"domain": "example.net"

}
]

}

Textual Content Matches Set

Immediately after obtaining a DEMS, the client iterates over all its
cFQDNs (example.com, example.org and example.net in our example)
and sends a SEARCH /cFQDN request to each one of them, those are all
search requests to the different localindxs, and the expected result is a
markdown formatted string of text for each page with matches, where
the matching tokens are highlighted and shown in their surrounding
context.

The Textual ContentMatch Set or TCMS is the result of joining all those
responses with the DEMS.

With the search how to play the drums, the TCMS obtained after query-
ing all the cFQDNs in the DEMS first page could be something like
this:

{
"srch_id": 1,

33

CIPR: SEMI-INFORMAL SPECIFICATION

"page_num": 1,
"page_size": 3,
"total_pages": 234,
"matches": [
{
"rank": 1,
"domain": "example.com",
"pages": [
{
"path": "/easy-peasy.html",
"context": "and if you've ever wanted to learn to

play the drums, now is the best time
to do it. With an unlimited number of
online resources, it's become easier
than ever to pick up a pair of drum
sticks and start learning"

},
{
"path": "/hard.html",
"context": "Not necessarily. I don't find *drums*

easier than guitar or piano. Plus
learning rudiments and playing them
fast is hard compared to guitar or
piano or almost any other instrument
I've learned, mainly"

}
]

},
{

34

CIPRSYS

"rank": 2,
"domain": "example.org",
"pages": [
{
"path": "/countries/japan/",
"context": "the Japanese taiko *drums* are also

played in this way. Next, one of
the drumsticks is laid on the rim
and it is struck using the other
drumstick. One can hear the crack
of the wood being struck. Then
there is the"

}
]

},
{
"rank": 3,
"domain": "example.net",
"pages": [
{
"path": "/2028/june/15/230748/0004501.xhtml",
"context": "to start playing *drums*? Learning

how to *play* can be exciting and
rewarding, but there are a few
things that you should do before
you dive in. The good news is
that it's not as hard to learn to
play *drums* as it may"

}

35

CIPR: SEMI-INFORMAL SPECIFICATION

]
}

]
}

Hereafter it’s all about presenting those results in a friendly way to
client, in the case of human interfaces, or to process them properly
in bot clients.

Tenancy models

Regarding the tenancy preferences, two main types of ciprnode imple-
mentations are expected to evolve:

ST ciprnode: single-tenant oriented implementations, where every-
thing is though to have the lowest possible hardware requirements
and the lowest possible resource consumption. Ideal ST implementa-
tions runs smoothly in the simplest homelab, in a very light container,
in a SBC or even in a Tamagotchi.

Even using embedded DBMS’10, the main complication for this type of
implementation is the size of an eventually well populated Cipr.

No matter what, STs are the ideal implementations because they guar-
antee distribution, independence and decentralization.

MTciprnode: multi-tenant oriented implementations, where the main
goal is to host multiple ciprnodes instances in a single server. This

10SQLite, InfinityDB, Perst…

36

POC

type of implementation probably share a large DBMS/RDBMS under
the hood, it’s suited to handle a heavy network traffic load so, they are
mostly to be deployed in large datacenters.

With this type of implementation increases the risk of centralization
and the risks to the security of the Ciprsys, but their existence is justi-
fied: they facilitate more publishers having a presence in the Cipr.

Of course, there is no reason to limit the possible types of ciprnode to
STs and MTs, hybrid types or totally different approaches could exist
and coexist.

PoC

Later.

Epilogue

The Cipr isn’t intended to replace existing search engines or directo-
ries, it can’t, it’s just an alternative11. The Ciprsys will grow to be of use
if―and only if―a relevant group of domain holders―content pub-
lishers―get interested in listing their resources there, if regular search
engines and directories are enough for their needs, the Cipr will be just
an anecdote.

11A better one, certainly.

37

CIPR: SEMI-INFORMAL SPECIFICATION

Contribution

Glad to accept PRs for all you know is wrong in here, all you know is
missing and all you know can be improved.

https://codeberg.org/Cipr/specification

38

https://codeberg.org/Cipr/specification

	Cipr: Semi-informal Specification
	Ciprsys
	Domain Name System
	Ciprnet
	Ciprnode
	Ciprdup
	Ciprdup fields
	sldl
	tldl
	title
	description
	keywords
	geo
	ofle
	ban

	General constrains
	Example
	Ciprule

	Localindx
	Ciprbot
	CiprAPI
	Summary of the CiprAPI’s endpoints
	Basic characteristics of the CiprAPI

	Ciprpulse
	1. SEARCH rebroadcasting
	2. SEARCH broadcasting
	3. PUT rebroadcasting
	4. PUT broadcasting
	5. DELETE rebroadcasting
	6. DELETE broadcasting
	7. DNS entries check
	8. Banned entries check

	Incorporation to the Ciprnet
	1. Ciprnode deployment
	2. Initial configuration
	3. Ciprdup population
	4. Hash generation
	5. TXT record creation
	6. Ciprpulse activation

	Ciprface
	Searching in the Cipr
	Directory Entries Match Set
	Textual Content Matches Set

	Tenancy models
	PoC
	Epilogue
	Contribution

